Journal of Organometallic Chemistry, 393 (1990) 339-342 Elsevier Sequoia S.A., Lausanne JOM 21026

Oxidative addition of organic halides to $(\eta - C_5 H_5)_3 U(THF)$ (THF = tetrahydrofuran). A convenient new synthesis of triscyclopentadienyl uranium(IV) hydrocarbyl complexes

Claude Villiers and Michel Ephritikhine

Service de Chimie Moléculaire, IRDI/DESICP/DLPC/CEA-CEN Saclay, CNRS URA 331, 91191 Gif sur Yvette Cédex (France)

(Received March 13th, 1990)

Abstract

 $Cp_3U(THF)$ ($Cp = \eta - C_5H_5$; THF = tetrahydrofuran) reacts with organic halides RX to give the equimolecular mixture of the Cp_3UX and Cp_3UR compounds. The features of the reaction are characteristic of an atom abstraction oxidative addition mechanism. Treatment of Cp_3UCI with RX in the presence of sodium amalgam leads to quantitative formation of the Cp_3UR complexes.

Introduction

Oxidative additions of organic halides to d transition metal complexes have been extensively studied, but in organoactinide chemistry only the reactions of the uranium(III) compound $(\eta - C_5 Me_5)_2 UCI(THF)$ [1] have been examined. More recently, oxidative addition reactions of various organolanthanide(II) systems have been reported [2]; mechanistic studies were complicated by further reactions of the initial products. We describe below the reactions of the tris-cyclopentadienyl uranium derivative Cp₃U(THF) (I) with some organic halides, and provide clear evidence for a halogen atom abstraction oxidative addition mechanism. We also describe a convenient new synthesis of the uranium(IV) alkyl derivatives Cp₃UR.

Results and discussion

Reactions of $Cp_3U(THF)$ with organic halides

The triscyclopentadienyl uranium(III) compound Cp₃U(THF) (I) when treated at room temperature in tetrahydrofuran with CH₃I, n-C₄H₉X (X = Cl, Br, I), i-C₃H₇Cl, C₆H₅CH₂Cl and CH₂=CHCH₂Cl was totally converted into an equimolecular

mixture of
$$Cp_3UX$$
 (II) and Cp_3UR (III), according to Eq. 1.

$$Cp_{3}U(THF) + 0.5 RX \to 0.5 Cp_{3}UX + 0.5 Cp_{3}UR$$
(1)
(I) (II) (III) (III)

. .

(4)

When 0.5 equivalent of organic halide was used, an unidentified intermediate, the proportion of which never exceeded 5%, was sometimes detected (by NMR, $\delta Cp = -12.4 \text{ ppm}$); it was rapidly transformed into the final products in the presence of a slight excess of RX (<1 equiv.). Under these conditions, the Grignard type reactions Cp₃UR + RCl \rightarrow Cp₃UCl + RR (R = C₆H₅CH₂ or CH₂ = CHCH₂) were found to be very slow [2].

These oxidation reactions of I proceeded quite rapidly, being complete within < 5 min, except for that with n-butyl chloride, which required 1.5 hour for completion. It was thus evident that an alkyl chloride is less reactive than the corresponding bromide and iodide, and that a primary halide is less reactive than a secondary, benzylic or allylic halide. Treatment of I with tertiary organic halides $((C_6H_5)_3CCl, tC_4H_9Br)$ gave only Cp₃UX, the corresponding Cp₃UR derivatives being unstable [3]. The phenyl halides C₆H₅X (X = Br, I) also reacted in THF with I (0.05 *M* each) to give a mixture of II (50%) and Cp₃UC₆H₅ (37%) and an unidentified product (δ Cp = -6.7 ppm); the reaction times were 10 min (X = I) and 6 h (X = Br).

The rates of these reactions were much higher in benzene. In this solvent, I was immediately oxidized by $n-C_4H_9Cl$ and reacted with 1 equivalent of phenyl chloride (0.05 *M*, $t_{1/2} = 3$ h) to give an equimolecular mixture of II and Cp₃UC₆H₅. This solvent dependence is clearly indicative of the need for prior dissociation of the THF ligand of I, leading to the less sterically hindered and more reactive Cp₃U species.

Treatment of I with either cyclopropyl methyl bromide or 4-bromobut-1-ene led to the immediate formation of $Cp_3UCH_2CH_2CH=CH_2$, showing that alkyl radicals are involved in the reactions [4].

The observations provide good evidence for the halogen atom abstraction oxidative addition mechanism [5] depicted in Eqs. 2-4.

$$Cp_3U(THF) \rightleftharpoons Cp_3U + THF$$
 (2)

$$Cp_3U + RX \rightarrow Cp_3UX + R$$
 (3)

$$Cp_3U + R \cdot \rightarrow Cp_3UR$$

That the reaction rate is greatly dependent on the concentration of the coordinatively unsaturated species (Eq. 2) can be attributed to the availability of an inner sphere pathway for the U^{III} species. Such a mechanism was also suggested to account for the oxidation of some organolanthanide(II) systems [2] and $(C_5Me_5)_2UCl(THF)$ by organic halides [1]. However, in this case, it was found that not all of R · radical was captured by the U^{III} species (Eq. 4), and, in particular, when benzyl chloride was used, no $(C_5Me_5)_2U(Cl)(CH_2C_6H_5)$ was formed. This unusual behaviour cannot be easily explained.

Synthesis of the Cp₃UR complexes

We recently showed [6] that $Cp_3U(THF)$ can readily be obtained by the Na(Hg) reduction of Cp_3UCl (IIa), and in view of the above results we though that it might

be possible to isolate the U(IV) alkyl complexes $Cp_3UR(III)$ from the reaction of IIa with RX in the presence of sodium amalgam (Eq. 5).

$$Cp_{3}UCl + RX + 2Na(Hg) \rightarrow Cp_{3}UR + NaCl + NaX$$
(5)
(IIa)
(III)
(RX = CH_{3}I, nC_{4}H_{9}Br, iC_{3}H_{7}Cl, CH_{2} = CHCH_{2}CH_{2}Br,
$$CH_{2} = CHCH_{2}Cl, C_{6}H_{5}CH_{2}Cl)$$

This procedure does, in fact, provide a convenient synthesis of compounds III, which are usually prepared by treatment of IIa with the corresponding Grignard or alkyllithium reagent [3]. No alkylsodium or alkylmercury species [7] are involved in these alkylation reactions, since RX was found to be inert towards the sodium amalgam in THF at 20 °C. The Cp₃UR complexes were obtained in quantitative yield (as indicated by NMR spectroscopy). The latter were reduced to the corresponding U^{III} anions Cp₃UR⁻ [8] when 3 equivalents of Na(Hg) were used. Formation of Cp₃U(THF) from Cp₃UCl is faster than the Cp₃UR \rightarrow Cp₃UR⁻ reduction, and in the reaction shown in Eq. 5 no U^{III} alkyl anion is formed because the organic halide reacts rapidly with Cp₃U(THF).

The new compound $Cp_3UCH_2CH_2CH_2$ was synthesized on a preparative scale and isolated as red crystals in 90% yield. $Cp_3UCH_2C_6H_5$ was similarly obtained in 87% yield (compared with the 20% yield from treatment of IIa with benzyllithium [9]). Reaction 5 is also applicable to the synthesis of binuclear complexes: brown crystals of $Cp_3U(CH_2)_4UCp_3$ were prepared in 85% yield by using 0.5 equivalent of 1,4-dibromobutane. We are at present studying this compound and other similar bimetallic derivatives.

Experimental

General methods

Microanalyses were carried out by the Analytical Laboratories at Engelskirchen (F.R.G.). The ¹H NMR spectra were recorded on a Bruker W60 (FT) instrument. Deuteriated solvents were dried over Na/K alloy. The chemical shifts are given as δ values relative to tetramethylsilane ($\delta = 0$).

All experiments were carried out under argon in Schlenk type glassware on a high vacuum line or in a glove box. Solvents were thoroughly dried and deoxygenated by standard methods and distilled immediately prior to use. The organic halides (Aldrich) were distilled over $CaCl_2$ or $MgSO_4$. Cp_3UCl [10] and $Cp_3U(THF)$ [6] were prepared by published methods.

Reactions of Cp₃U(THF) with organic halides

In a typical experiment, an NMR tube was charged with $Cp_3U(THF)$ (10.1 mg), hexamethylbenzene (1.6 mg) as internal standard, and $THF-d_8$ or benzene- d_6 (0.4 ml). The organic halide (0.5 equiv.) was introduced with a gas-tight syringe. The products were characterized by their NMR spectra, which were identical to those of authentic samples and/or to those described in the literature (Cp_3UX in [11], and Cp_3UR in [3,9]). The yields were determined from the integrated spectra. Reactions of Cp₃UCl with organic halides in the presence of Na(Hg)

(a) In a typical experiment, an NMR tube was charged with Cp_3UCl (9.4 mg), 2% Na(Hg) (46 mg) and THF- d_8 (0.4 ml). The organic halide (1 equiv.) was introduced with a gas-tight syringe. The NMR tube was immerged for 5 min in an ultrasound bath (60 W, 40 kHz). The products were characterized by their NMR spectra; the yields were determined from the relative integrals of the Cp and solvent signals.

(b) An NMR tube was charged with Cp₃UCl (14.0 mg), 2% Na(Hg) (103 mg), and THF- d_8 (0.4 ml). n-Butylbromide (3.2 μ l) was introduced with a gas-tight syringe. The tube was immersed in the ultrasound bath; after 5 min, the NMR spectrum showed the formation of Cp₃UC₄H₉, which was reduced into the corresponding U(III) anion by further sonication (10 min).

$Cp_{J}UCH_{2}C_{6}H_{5}$

A 50 ml round bottom flask was charged with Cp₃UCl (209 mg) and 2% Na(Hg) (1027 mg); then immersed in liquid nitrogen, and C₆H₅CH₂Cl (56.5 mg) was condensed in under vacuum. THF (15 ml) was then condensed in under vacuum at -78° C. The mixture was stirred at 20 °C for 3 h and the solution then decanted off and filtered, and the solvent was evaporated to leave brown crystals of Cp₃UCH₂C₆H₅ (204 mg, 87%). The product was identified from its ¹H NMR spectrum [9].

$Cp_3UCH_2CH_2CH=CH_2$

This was prepared as described for Cp₃UCH₂C₆H₅ by using 4-bromobut-1-ene instead of benzyl chloride. Yield 90%. Analysis. Found: C, 46.44; H, 4.42. C₁₉H₂₂U calcd.: C, 46.72; H, 4.54%. ¹H NMR = δ (THF-d₈, 30°C): -2.69(s, 15H, Cp); -6.85 (d of d, 2.5 and 9,1 H, δ -CH *cis* to γ -CH); -10.91 (d of d, 2.5 and 17, 1H, δ -CH *trans* to γ -CH); -17.79 (d of d, 9 and 17, 1H, γ -CH); -27.45 (br, 2H, β -CH₂); -194.1 (br, 2H, α -CH₂).

$Cp_{3}U(CH_{2})_{4}UCp_{3}$

This was prepared as described for Cp₃UCH₂C₆H₅ by using 1,4-dibromobutane (0.5 equiv.) instead of benzyl chloride. The less soluble product was extracted with THF (3 × 20 ml). Yield 85%. Analysis. Found: C, 43.97; H, 3.93. C₃₄H₃₈U₂ calcd.: C, 44.25; H, 4.15%. ¹H NMR = δ (THF-d₈, 30°C): -6.65 (s, 30H, Cp); -47.50(br, 4H, β -CH₂); -192.65 (br, 4H, α -CH₂).

References

- 1 R.G. Finke, Y. Hirose and G. Gaughan, J. Chem. Soc. Chem. Commun., (1981) 232; R.G. Finke, D.A. Schiraldi and Y. Hirose, J. Am. Chem. Soc., 103 (1981) 1875.
- 2 R.G. Finke, S.R. Keenan and P.L. Watson, Organometallics, 8 (1989) 263 and references therein.
- 3 T.J. Marks, A.M. Seyam and J.R. Kolb, J. Am. Chem. Soc., 95 (1973) 5529.
- 4 A. Effio, D. Griller, K.U. Ingold, A.L.J. Beckwith and A.K. Serelis, J. Am. Chem. Soc., 99 (1979) 250.
- 5 P.B. Chock and J. Halpern, J. Am. Chem. Soc., 91 (1969) 582.
- 6 J.F. Le Maréchal, C. Villiers, P. Charpin, M. Nierlich, M. Lance, J. Vigner and M. Ephritikhine, J. Organomet. Chem., 379 (1989) 259.
- 7 J.L. Wardell in G. Wilkinson (Ed.), Comprehensive Organometallic Chemistry, Vol. 1, p. 43 and Vol. 2, p. 863, Pergamon, Oxford, 1982.
- 8 L. Arnaudet, P. Charpin, G. Folcher, M. Lance, M. Nierlich and J. Vigner, Organometallics, 5 (1986) 270.
- 9 G. Brandi, M. Brunelli, G. Lugli and A. Mazzei, Inorg. Chim. Acta, 7 (1973) 319.
- 10 L.T. Reynolds and G. Wilkinson, J. Inorg. Nucl. Chem., 2 (1956) 246.
- 11 N.K. Sung-Yu, F.F. Hsu, C.C. Chang, G.R. Her and C.T. Chang, Inorg. Chem., 20 (1981) 2727.